AD-A283 615
LT

US Army Corps }1
of Engineers

Construction ineering
Resgarch Lnbeggbdu

UBACERL Teohniosl Report FF-84/28
June 1904

Knowledge Worker Platform Analysis

by

Edward J. Jape!
Melody M. Moore
Wayne Schmidt
Spencer Rugaber
Hernan Astudilio
and Scott Maxwell

Many Army personnel can be classified as knowiedge
workers—people who produce not tangible products,
but some form of processed or enhanced information.
Most Army knowledge workers depend on computer
processing to complete their tasks efficiently. However,
those tasks are often complicated by the many comput-
or platforms and software packages used to contain and
convey needed information.

The U.S. Army Construction Engineering Research
Laboratories (USACERL) has been conducting ongoing
research into the problems of information access and
management for knowledge workers, with the ultimate
goal of developing a comprehensive performance
support environment for knowledge workers. The
Knowledge Worker System (KWS) is a prototype
scheduling program designed to help knowledge
workers organize and coordinate their work by storing
task scheduling information in a centralized data base.
KWS tracks scheduled events, provides a list of
completed events, and outlines the steps necessary to
complete forthcoming tasks. This study examined the
feasibility of converting KWS to an “open systems”
technology to make the program compatible with a
number of different plattorms. Current marketability of
language tools, graphical user interface (GUI) tools, and
operating systems were investigated for compliance
with government and open systems standards. Strate-
gic plans were devised for KWS conversion.

WHMM;Mb%4 8

oy T

3

0 94-26750
AR AR

INSPECTED &

22 136

The contents of this report are not to be used for advertising, publication,
or promotional purposes. Citation of trade names does not constitute an
official endorsement or approval of the use of such commercial products.
The findings of this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED

DO NOT RETURN IT TO THE ORIGINATOR

LUSER EVALUATION OF REFORT

REFERENCE: USACERL Technical Report FF-94/25, Knowledge Worker Platform Analysis

Please take a few minutes to answer the questions below, tear out this sheet, and retumn it to USACERL. As
user of this report, your customer comments will provide USACERL with information essential for improving
future reports.

1. Does this report satisfy a need? (Comment on purpose, related project, or other arca of interest for which
report will be used.)

2. How, specifically, is the report being used? (Information source, design data or procedure, management
procedure, source of ideas, etc.)

3. Has the information in this report led to any quantitative savings as far as manhours/contract dollars
saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.

4. What is your evaluation of this report in the following arcas?
a. Presentation:

b. Completeness:
c. Easy to Understand:

d. Easy to Implement:

¢. Adequate Reference Material:

f. Relates to Area of Interest:

g. Did the report meet your expectations?
h. Does the report raisc unanswered questions?

i. General Comments. (Indicate what you think should be changed to make this report and future reports
of this type more responsive to your needs, more usable, improve readability, etc.)

5. If you would like to be contacted by the personnel who prepared this report to raise specific questions or
discuss the topic, please fill in the following information.

Nan -

Telephone Number: . .

Organization Address:

6. Please mail the completed form to:

Department of the Army

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES
ATTN: CECER-IMT

P.O. Box 9005

Champaign, IL 61826-9005

Y

REPORT DOCUMENTATION PAGE OB e erece

OMB No. 0704-0188
mmmuumamumnm|mwm.mmumumnm.mmmum‘
mmmnuwwmmwmmmﬁamdw Send comments regarding this burden sstimate or any ather aspect of this
colisction of information, including suggestions for reducing this burden, to Washington Hesdquarters Services, Dicectorase for information Operations and Reports, 1215 Jeflerson
mmy.suu1204.mgm,vuzzoz-ma.mmmonudwmcmw.wmmmmnm.w.ocm&

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1994 Final

4. TITLE AND SUBTITLE 15. FUNDING NUMBERS
Knowledge Worker Platform Analysis MIPR

DLAH-92-ZRM-206

8. AUTHOR(S)
Edward J. Japel, Melody M. Moore, Wayne Schmidt, Spencer Rugaber,
Heman Astudillo, and Scott Maxwell

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) |e. PERFORMING ORGANIZATION
U.S. Army Construction Engineering Research Laboratories (USACERL) REPORT
P.O. Box 9005 FF-94/25
Champaign, IL 61826-9005

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Defense Lomsncs Agency AGENCY REPORT NUMBER
ATTN: DLA-ZI
Room 3B527 Cameron Station

Alexandria, VA 22304-6100

11. SUPPLEMENTARY NOTES
Copies are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 120. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

Many Army personnel can be classified as knowledge workers—pcople who produce not tangible products, but some form
of processed or enhanced information. Most Army knowledge workers depend on computer processing to complete their
tasks efficiently. However, those tasks are often complicated by the many computer platforms and software packages used
to contain and convey needed information.

The U.S. Army Construction Engineering Research Laboratories (USACERL) has been conducting ongoing research into
the problems of information access and management for knowledge workers, with the ultimate goal of developing a
comprehensive performance support environment for knowledge workers. The Knowledge Worker System (KWS) is a
prototype scheduling program designed to help knowledge workers organize and coordinate their work by storing task
scheduling information in a centralized data base. KWS tracks scheduled events, provides a list of completed events, and
outlines the steps necessary to complete forthcoming tasks. This study examined the feasibility of converting KWS to an
*‘open systems” technology to make the program compatible with a number of different platforms. Current marketability of
language tools, graphical user interface (GUI) tools, and operating systems were investigated for compliance with
government and open systems standards. Strategic plans were devised for KWS conversion.

14. SUBJECT TEAMS 15. NUMBER OF PAGES

Knowledge Worker System (KWS) task scheduling information 44

open systems technology 18. PRICE CODE

Ada (computer program language)

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR

NSN 7540-01-280-5500 Standerd Form 298 (Rev. 2-89)

Prencribed by ANSI Swd 230-18
208-102

ﬁ”

USACERL TR FF-94/28

Foreword

This study was conducted for Defense Logistics Agency under Military Interde-
partmental Purchase Request (MIPR) No. DLAH-92-ZRM-206. The technical
monitor was Harriet Riofrio, DLA-ZI.

The work was performed by Facility Management Division (FF), Infrastructure
Laboratory (FL), U.S. Army Construction Engineering Research Laboratories
(USACERL). The USACERL principal investigator was Edward J. Japel. Dr.
Spencer Rugaber, Hernan Astudillo, and Terry Kane are associated with the Georgia
Institute of Technology College of Computing, Open Systems Laboratory. Alan
Moore is Chief, CECER-FF and Dave Joncich is Acting Chief, CECER-FL. The
USACERL technical editor was William J. Wolfe, Information Management Office.

LTC David J. Rehbein is Commander and Acting Director, USACERL. Dr. Michael
J. O’Connor is Technical Director.

Acoession For

NTIS GRA&I
DTIC TAB
Unannoioced
Justirfcatio

DOR

By
| Distritution/
Aveilsability Cciss
Avall adaior
Special

Contents
S 208 ... e e
FOPOWONT i e i
Listof Tablesand Figures i iiiiiiiiiiiiinannns
1 MPOBUCHION i e e et
Background
Objectives
Approach
Scope
2 SystemOverviewandConversioncciivunnn..
The Knowledge Worker System

Open Systems Organizations, Standards, and Conventions
Re-Engineering Methods and Techniques

VOO SUIVOY o it it e s
Operating Systems

Ada Compilers

Graphical User Interface Tools

Database Access

TransitionStudy Resullsiiiiiiiiiiiiinnarnnnnns
Statistical Analysis

Hardware Platform Issues

Operating System issues

Language Issues

User Interface Issues

Overview

Platform Choice
Strategic Aiternatives
Strategy Recommendation

USACERL TR FF-04/28

List of Tables and Figures

Tables

Al

A3

A4

Detinition of terms related to standards compliance 1
IEEE POSIX standards and specificationso. 12
Definition of terms related to re-engineering methods 13
Statistical analysis of KWS source codecoiiiiiiiiiiiinnnenen 25
Distribution analysis of KWSsourcecodecccovivininnn. 25
Windows-to-Dev/Guide mapping e K
Projected completion schedules for Phases of KWS migration. 35
Projected completion schedule for Phase Il of KWS migration. 35
Main SCrON it it i 38
Event Mmanager SCreeNo vttt e 38
TODOHSESCrEONttt ittt i e 39
AOMINISIratOrS SCIOOMiiiiiiiiitiiiiiininetterreennnanaens 39
Main RBlP SOttt it ittt ittt ae 40

1 Introduction

Background

Many Army personnel can be classified as knowledge workers—people who produce
not tangible products, but some form of processed or enhanced information. While
most Army knowledge workers depend on computer processing to complete their
tasks efficiently, their tasks are often complicated by the many computer platforms
and software packages used to contain and convey needed information.

The U.S. Army Construction Engineering Research Laboratories (USACERL) has
been conducting ongoing research into resolving problems of information access and
management for knowledge workers, with the ultimate goal of developing a
comprehensive performance support environment for this group. The Knowledge
Worker System (KWS) is a prototype scheduling program designed to help
knowledge workers organize and coordinate their work by storing task scheduling
information in a centralized data base. KWS tracks scheduled events, lists
completed events, and outlines the steps necessary to complete forthcoming tasks.

It may be possible to broaden KWS's applicability by converting it to an “open
systems” technology, an approach that would make the program compatible with a
number of different platforms. Open systems technology has become increasingly
important in computing environments in recent years. Following open systems
standards can reduce the overwhelming cost of software development, improve
system reliability, and reduce maintenance costs (Quarterman and Wilhelm 1993).
Software applications can be tested for adherence to standards; therefore, metrics
can be developed to determine the portability and interoperability of applications.
This study analyzed the feasibility of re-engineering KWS for open systems and
outlined strategies to implement the conversion.

Objectives

The ohjectives of this study were: (1) to determine the feasibility of converting KWS
to open systems technology, including POSIX and Motif, (2) to explore the feasibility

8 USACERL TR FF-04/25

of reimplementing KWS in the DOD-standard computer language, Ada, and (3) to
investigate the current market availability of language tools, POSIX-compliant
operating systems, and Graphical User Interface (GUI) builder tools.

Approach

A statistical analysis of the KWS source code showed that developing the user
interface would be the largest effort in re-engineering the program. On this basis,
the study concentrated on locating Ada and C/C++-based user interface tools and
support systems for Motif. A market survey was done to locate other open systems
tools and operating systems. Information from the source code analysis and market
survey was used to perform a transition study that concentrated on issues involving
hardware platforms, operating systems, programming languages, user interfaces,
and organizational decomposition (object-oriented vs. functional programming
characteristics).

Scope

This study analyzed Knowledge Worker, Version, 1.6. Results of this study may not
apply to later versions of the program.

2 System Overview and Conversion

The Knowledge Worker System

The Knowledge Worker System (KWS) is a software package designed to simplify the
job of knowledge workers (Construction Research Center 1993). KWS allows
knowledge workers to organize and coordinate their work by storing task-scheduling
information ° a centralized database. KWS tracks the scheduled events and any
modifications to the schedule, and also serves as a repository of information about
each task. KWS helps keep knowledge workers on schedule by providing a list of
tasks to be completed and outlining the steps necessary to complete each task. It
notifies the user of schedule or task changes and retains completion data for

supervisors.

Open Systems Organizations, Standards, and Conventions

Identifying the major standards organizations and their activities is key to
understanding the open systems world. This is a rapidly developing market, and
therefore it is crucial to continually monitor the journals and newsletters from the
various organizations. The following describes important standards organizations,
relevant standards, and some definitions of conformance.

Open Systems Organizations

This section describes the various open systems organizations, their current status
and purposes, and the relationships between them.

Uniforum. Uniforum is a nonprofit international association of open systems
professionals that publishes the Uniforum Monthly, a journal of open systems and
UNIX articles, and Uninews, a biweekly newsletter. Uniforum also publishes the
annual Uniforum Products directory to promote trade and communications within
the community. It also publishes a series of technical guides and overviews for open
systems topics.

X/Open. Established in 1984, X/Open is an independent international consortium
of computer system vendors who share the goal of developing a common applications

10 USACERL TR FF-94/25

environment for multiple vendors based on international and de facto standards.
Most of the largest industry vendors and customers are members of this consortium.
X/Open is developing the Common Applications Environment (CAE), whick contains
practical interface specifications for interoperability and software portability.
X/Open is more concerned with practicality than with formality, and has adopted and
adapted existing standards as a basis for the CAE. The CAE is being developed
through three programs:

1. The Xtra Market Requirements Process: This process identifies the real market
needs for applications in open systems environments. The results of this analysis
give X/Open a consensus view of the market requirements. The Xtra process also
creates and guides technical work groups for specific issues.

2. The XPG Specifications: The X/Open Portability Guide (XPG) is a set of
specifications that define an open systems environment interface. The XPG
includes an integrated set of components needed by a portable application.

3. TheX/Open Conformance Testing and Branding Program: X/Open publishes
the X/Open Portability Guide, which contains an extensive set of conformance
criteria based on verification tests. The VSX3 test suite exists to verify that
the system software running on a hardware environment conforms to the
X/Open specifications. The test suite produces a report that rates the product’s
X/Open conformance. Products deemed compliant receive the X/Open “brand,”
which symbolizes its acceptance.

IEEE 1003 Committee. The 1003 series of committees were chartered by the IEEE
society to develop the standards documents for the Portable Operating System
Interface for Computer Environments (POSIX). These all-volunteer committees
represent a cross-section of expertise from industry and academia. IEEE standards
are subject to reaffirmation every 5 years, which means that the POSIX.1 standard
will be due for review in 1993.

ISO. The International Standards Organization has been involved as a review body
in the development of the POSIX.1 standard (approved as a Draft Proposed
International Standard). Some minor changes were suggested so the POSIX.1
standard could be submitted as a full international standard.

NIST. The National Institute of Standards and Technology originally developed its
own operating systems standards, but has since merged with the IEEE 1003
committee to develop POSIXFIPS. This standard mandates some features
considered optional or unspecified in POSIX.1, but otherwise matches the POSIX

USACERL TR FF-84/25

11

standard. NIST also pfoduces the Application Portability Profile, which outlines a
set of standards for application development.

ANSI. The American National Standards Institute has not been involved in the
development of the operating systems standards, but it has been involved with the
development of C language standards (ANSI C) that include standard libraries and
operating system interfaces. ANSI is working with the POSIX.1 committee to
address these OS-specific functions.

POSIX Conformance

The major goal of standardization is to provide a platform for portability and
interoperability. This is accomplished through a variety of mechanisms with varying
degrees of formality. Conformance to the standards also ranges from formal
certification to partial compliance. The following discussion outlines how the
standards differ and how conformance is measured.

Definitions. To assess compliance, the specification’s formality must be determined
precisely. Table 1 lists the terms defined for their use in, this study.

IEEE 1003. The POSIX operating system specification is a formal standard, IEEE
P1003 and ISO/IEC IS 9945. The formal standard is part of a larger body of work
that includes many projects and draft standards, some of which are in balloting.
Table 2 shows the relevant IEEE speciﬁcations' and standarde.

Table 1. Definition of terms related to standerds compliance.

organization, but 80 widely used that it is recognized as a standard.

systems organization, or may be specific to a vendor.
ISP An internationally standardized profile.

de facto standard A specification that is not a formal standard approved by a standarde

Profile Defines an application interface or environment with a set of specifica-
tions and standards. Profiles may be standards produced by an open

Torm Definition

Standard A formal specification reviewed and approved by a formal standards
body such as ANSI or NIST.

Specification Not necessarily a standard, but may bae in the review process to become
a standard.

Table 2. IREE POSIX standarde snd specificstions.

| EEESpec __ Socope
1003.1 POSIX System Appiication Programming intertace (API)
1003.1a Extensions 10 1003.1
1003.2 POSIX Sheit and Wilities
1003.2a User Portability Extensions (UPE)
1003.3 POSIX Test Methods Standard
1003.4 Real ime extensions (including threads)
1003.5 Ada bindings %0 1003.1

The Test Methods Standards committee (1003.3) has two subcommittees: 1003.3.1,
which is developing test methods for 1003.1 (System API), and 1003.3.2, which is
developing similar methods for 1003.2 (Shell and Utilities). Other POSIX
committees are charged with developing their own test methods.

Testing for compliance is performed by laboratories that have been accredited by
authorized accreditation bodies (such as NIST). Then an independent validation
body validates the results of the tests. Finally, the accredited laboratory provides
certification for the tested products. Conformance to the above-listed standards and
specifications can take two different forms: application and implementation of the
system interface.

Application Conformance. Conformance to the POSIX.1 standards for applications
determine the level of portability of that implementation. There are three levels of
conformance for applications:

1. Strictly conforming. The application exclusively uses features from the
POSIX.1 standard or applicable language standard.

2. Conforming POSIX.1. Conforms to the POSIX.1 standard, but may also use
other standards not related to the System Interface Standard. All standards
used must be documented, along with options and dependencies.

3. Conforming with Extensions. Conforms to the POSIX.1 standard, but may use
nonstandard extensions or facilities. Implementation-defined behavior is
acceptable but must be specified in the implementation.

Impiementation Conformance. For system interfaces, there is only one form of
conformance: the standard facilities of POSIX.1 must be implemented with the
specified behavior. The concept of a “strictly conforming implementation” does not

agci - o

S

USACERL TR FE-04/25 13

as long as the basic facilities of the POSIX.1 standard are not altered and a strictly
conforming application will perform correctly.

In fact, it is nearly unavoidable that the POSIX.1 standard be augmented in an
implementation because the standard does not address such key features as system
administration and some file-system support mechanisms. Therefore, vendors of
POSIX-compliant systems must document the extensions and implementation-
defined features of their interface.

Re-Engineering Methods and Techniques

An overview of current research in reverse engineering and re-engineering systems
follows. Table 3 lists definitions of terms used in this document that relate to re-
engineering methods.

Migration Strategies

There are many ways to move an information system to a distributed open systems
environment. The following section lists some of the studied approaches organized
roughly in order of increasing required effort.

Every strategy has its costs and benefits. For any given situation, the costs and
benefits of candidate strategies must be compared to select the best approach.
Decision Criteria (p 15) describes questions that can be asked to help clarify the
situation before choosing a strategy. A description of the strategies themselves
follows.

Table 3. Definltion of terms reisted to re-enginesring methods.
Term Definition

| Migration (or conversion) A general term that refers to the procedures, methods, and practice of moving
software from one computing environment (including hardware platform,
operating system, and tool support) to a different environment.

Re-engineering The task of redesigning and reimplementing code. Re-engineering may
include changing an application’s functionality as well as its implementation.
Porting (or transporting) Moving an application from one environment to another with minimal changes.

Porting usually implies that nothing other than machine-specific code is
changed; the code, appearance, and functionality of the ported software should
be nearly identical to the original.

Reverse engineering The process of examining code from an existing application to understand its
design.

Forward engineering i ing a system from a re-engineered

14

USACERL TR FF-84/28

Doing Nothing. The baseline against which the other strategies must be measured
is the strategy of simply doing nothing. In this case, there is no real benefit, and the
cost is fairly well understood. This strategy may be appropriate if an application is
going to be replaced or phased out, or if an application is used only infrequently at
a single site. In such circumstances, there is little value in supporting open systems
or distributed access.

Direct Application Porting. Sometimes a system can be re-engineered simply by
directly porting the application to the new platform without adding any new
functionality. To pursue this strategy, the machine-specific code is rewritten fc -
new platform, and then recompiled on the new platform. This is slow but rela:
straightforward. Once a list of specific conversions has been made, the source-code
conversion can be partially automated.

The direct porting strategy is best when a large portion of the code is platform-
independent. Simple porting is not possible if large portions of the code must be
rewritten (for example, when replacing a user interface with very different display
technology). Porting may also be used as an interim step to some of the strategies
described below.

Conversion by Re-Engineering. Without a clear understanding of the original code’s
design, moving a system from one platform to another is an open invitation to
disaster. Reverse engineering software reveals an application’s structure; the under-
standing thus gained can then be used as a basis for enhancements.

The benefits of such an approach are obvious, but the costs are hard to measure.
Reverse engineering is slow, hard work. Some mechanisms for partially automating
the process are described below.

Manual re-engineering is best when the existing code will be used extensively for the
foreseeable future. Maintenance activities that require modification of existing code
(as opposed to adding new modules) can also help justify the expense of reverse
engineering.

It is not always necessary to reverse-engineer an entire system, although the reverse
engineer always needs to understand the relationship of the part under inspection
to the whole system. Thus, when documentation is plentiful and accurate and the
maintenance personnel are experienced, partial reverse engineering may be more
feasible.

USACERL TR FF-94/25

13

Automatic Reverse-Engineering. Automation can help reduce the cost of reverse
engineering. Automatic reverse engineering involves using a program that identifies
features of existing programs and translates them into a standard design representa-
tion. Unfortunately, few tools currently exist for that task, and those that do exist
are primitive, capable of describing only the existing system’s surface features. The
problem of analyzing code is compounded by the fact that layers of bug fixes and
rewrites pile up on the original code like patches on old clothes, so that the original
dec:zn is often obscured.

Programs are analyzed by systematically inspecting the source code itself; the fruit
of the analysis is a description of the application domain and of the procedures that
the program models. This analysis can be performed manually, but the process is
labor-intensive and slow. Any help an automated tool offers in this area is a
blessing.

Some CASE tools, such as IDE’s Software Through Pictures (STP), support reverse
engineers in a variety of ways. The information in a diagram is stored in a
standardized text file with a well-documented format. Diagrams are normally
constructed in STP by the user, who manually selects icons to flesh out the diagram
on the screen. Using the published file format, however, diagrams can be con-
structed automatically based on the information extracted by other tools. This
representation can help to forward-engineer to a new platform.

Rewrite From Scratch. A final strategy must be mentioned for reasons of complete-
ness. Sometimes it may be best to throw out the existing program entirely, respecify
the requirements, and then rebuild the whole system from scratch. This decision is

most appropriate when an old system needs to be greatly modified and is so complex
that re-engineering would be more expensive than simply starting over.

Decision Criteria

The following section describes the variety of costs and benefits examined in
selecting a strategy, or the “decision criteria.”

Factors Related to Usage of the Existing System.
e How many users does the system have?

* How are the users distributed topologically? (Are they logged into the
mainframe, do they submit batch jobs, or are run requests handled manually?)

* How frequently is the application used?

¢ In what ways is the application used? (What is the ratio of data updates to
reports produced? How frequently is each such use made?)

¢ What is the physical process by which the application is currently used (data
entry, validation handled separately; manual or electronic distribution of
reports)?

e How many different sites use the existing system?

e What is the expected lifetime of the existing application? Is usage increasing
or decreasing?

¢ In terms of human and machine resources, how much does it cost to execute the
program? How does this cost vary across the various types of uses?

e Are there political factors that would impede the reduction in information
control that results from distributed access?

e Are there administrative procedures that would be difficult to provide in a
distributed environment? What are the costs in transforming these proce-
dures?

e Do other applications depend directly on the data produced by this application?
Conversely, does this application depend on the products of other applications?

Factors Related to the Structure and Functionality of the Existing System.

¢ How compatible is the current architecture with the client/server model? Is the
application primarily batch or interactive?

e What external resources and connections does the application require? How
extensively are these used?

e Does the existing system make use of nonportable operating system capabili-
ties? Does the existing system interface to other existing systems?

¢ Does the existing system write reports? If so, is the computational functional-
ity separable from the report construction functionality? Are there reports that
could be replaced by Structured Query Language (SQL) queries? Are there
reports that could be replaced by reports constructed by the relational data
base management system (RDBMS) report writer capability?

USACERL TR FE-04/28

¢ Does the current application do significant data validation that could be
replaced by the data validation features of the RDBMS? Could the current
application make effective use of advanced RDBMS operations like views and
joins?

Factors Related to Expected Usage of the Converted System.

¢ How much more frequently will the system be used when it becomes available
on a network? What is the expected change in the kind of usage (e.g., from
batch to interactive) promoted by distributed access?

e Can the application take advantage of DBMS capabilities such as security and
integrity?

e What is the expected change in execution cost in terms of machine and human
resources?

Factors Related to Expected Evolution of the Converted System.

e Does the existing system make use of a DBMS? Is it relational? Does the
existing system make use of an older COBOL version? Are there portability
issues related to data conversion? Can this application be integrated into
others? ‘

¢ How much effort is now put into maintaining the system? What enhancements
to the system are planned? What enhancements would be facilitated by the use
of an SQL interface to the data?

e Are there personnel available who are familiar with the internals of the
existing system? Is the system documented? How up-to-date and accurate is
the documentation? Is the money available for a comprehensive reverse
engineering effort? Does this include funding to support the training of users
in 4GLs? Is incremental conversion feasible?

e Is the application part of the effort to standardize the use of data item names?
How closely does it conform to these standards?

18 USACERL TR FE-04/28

3 Vendor Survey

An important factor in the feasibility of re-engineering Knowledge Worker using
open systems technology is the availability of tools and resources. A description of
the survey and evaluation of open systems and supporting products on the current
market follows.

Operating Systems

For this study, a primary concern with operating system software is the level of
POSIX compliance. UNIX systems for the Sun SPARC architecture and also for the
386 personal computer (PC) architecture were examined.

SunOS 4.1.x System V Environment (Piatform: SPARC)

The SunOS version 4.1 installed with the System V installation option is certified
POSIX-compliant. It is actually a superset of the POSIX.1 standard, including all
of the functionality of the standard plus additional SunOS functionality. Working
in the POSIX environment under 4.1 simply entails adding the POSIX libraries to
the user’s path.

Sun Solaris 2.0 (Piatform: SPARC and 356/486)

Like SunOS 4.1, the latest release of the Solaris operating system is POSIX-
compliant. Solaris 2.0 is not binary compatible with SunOS 4.1.x, however, so
application tools to check for implementation on Solaris 2.0 must be chosen with
care. It was recently announced that Solaris for PCs will ke available mid-July 1993.

Microsoft Windows NT (Microsoft) (Platform: 366/486 and SPARC)

Microsoft's most recently announced operating system is partially POSIX-compliant.
It implements the base functions of POSIX 1003.1 but is not complete. The POSIX
compliance is provided in a subsystem that is not Windows-compliant. Windows
applications are not POSIX-compliant. Recently, Microsoft announced Windows NT
would be available on the SPARC platform.

Santa Cruz Operation (SCO) UNIX (Platform: 386/486)

SCO UNIX is a certified POSIX-compliant UNIX for the PC platform. It is a 32-bit,
multithreaded, multitasking, multiuser kernel with virtual memory.

Ada Compliers

Since C compilers generally are provided with UNIX implementations, and the

portable GNU C and C++ compilers are freely distributable, this survey concentrated
on Ada compilers.

Verdix 6.0 (Verdix) (Price varies by platform)

The Verdix Ada Development System (VADS) is an integrated set of software tools
for Ada program development. The package includes a validated Ada compiler, an
interactive debugger, a library management system, and other tools. VADS is
available on a number of platforms, including Sun SPARC, HP, DEC, and IBM PC
(under AIX). The VADS system is partially POSIX-compliant, and is being staged
to be fully compliant. The next release is due in August 1993 and will support IEEE
1003.1 Chapters 2, 4, 5, and 6. The following release is scheduled for December 1993
and will add some low-level features, including Ada I/O and signals.

SPARCWorks Ada (SunPro) (List $10,000)

SPARCWorks Ada is a “value-added” version of Verdix 6.0 for the Sun SPARC
platform. As such, it has all of the features and capabilities mentioned above, plus
integration with Sun display tools, such as deuguide (a GUI builder for Open Look
that eventually will be rewritten to handle Motif). SPARCWorks Ada can be
purchased with a maintenance option that will include the POSIX upgrades this
summer and next winter.

Alsys Ada (Alsys) (List $7,500)

Alsys Ada is supported on many platforms, including SPARC, SCO UNIX, and HP.
The vendor claims that it is POSIX-compliant and is capable of producing POSIX-
compliant code. Alsys Ada is a complete development environment including
compiler, library manager, and symbolic debugger. The AdaProbe symbolic debugger
and the AdaXref cross-reference generator are included, along with the AdaMake
makefile utility. Alsys also provides access to Motif through the “Ada Tune” tool
($2,250) and to the Xlib and Motif libraries ($2,995).

Ada Native and Cross Compiler Systems (TLD Systems) (List $10,000-$80,000)

TLD provides a POSIX-compliant Ada development system with cross-compiling
capabilities for real-time embedded systems development.

Graphical User Interface Tools

Building a Graphical User Interface (GUI) can be made much easier with GUI
builder tools. Some of the toolsets listed here are libraries or widget (generic tool)
sets, and some are actually palette-based tools that allow the user interface to be
built in “drag-and-drop” fashion. These GUI builder tools then generate the X and
Motif code to produce the user interface in the application. Because Sun announced
that Open Look is being discontinued in favor of Motif, only Motif-based tools were
investigated. '

Motif Toolkits—C and C++

Motif toolkits use the underlying native toolkits and provide widgets, gadgets, and
palette-based GUI builders. These tools produce C and C++ code to generate the
interfaces.

UIM/X (Visual Edge—Biusstone, distributor). (List $5,000.) Reputedly the best GUI
builder on the market for Motif, UIM/X includes a native toolkit and an interactive
GUI builder. UIM/X also includes an interpreter that allows developers to test
interfaces without going through the time-consuming steps of compiling, linking, and
debugging the code. Researchers at Georgia Institute of Technology received and
installed a demo copy of UIM/X and reported that it was a very powerful program.

Bulider Xcessory (integrated Computer Solutions, inc.). BX is a tool for building
Motif GUIs with a C interface. It also includes a “drag-and-drop” capability for style
sheets. The Army Research Laboratory (ARL) at Georgia Institute of Technology has
used BX for Motif development and warns that BX's own user interface is cumber-
some and produces a nonstandard user interface.

Centeriine Software (ViewCenter). (List $2,995 + $995 for libraries.) This SPARC-
based GUI development tool supports Open Look and Motif. It is basically a GUI
builder with hooks to C++. It implements its own toolkit (as opposed to using a
“native” toolkit) to lend a particular “look anc “eel” to the developed applications.

USA

TR FF-94/25

C++ Views (Liant Software). (List $1,495 [UNIX)$494 [Windows).) The Views
package supports Motif and OS/2 Presentation Manager with the native toolkits. It
includes an application programming interface (API) but no GUI builder tool.

Objectbuilder (ParcPlace Systems). (List $2,995.) Objectbuilder is a Ci++
programming tool that supports OpenLook and Motif for the SPARC platform only.
It is a GUI builder but does not have its own native toolkit.

Motif Toolkits—Ada

These toolkits are similar to the Motif toolkits above, except that they generate Ada
code instead of C or C++.

UIL/Ada and Ada/Motif (SERC). (One copy, $2,995; less for multiple copies.) This
tool translates the output of palette-based GUI builders (such as UIM/X) into Ada,
allowing Ada applications to be built with rapid prototyping. The UIL/Ada tool
translates the intermediate representation from the palette builder and produces
Ada code with Motif binding calls. The Ada/Motif libraries support calls from Ada
to Motif. These tools work with the Sun Ada compiler (which is not POSIX-
compliant), but not with the SPARCWorks Ada compilers specifically. It also works
with SCO/Alsys Ada and HP/Alsys Ada.

GRAMM (EVB Software). (One copy, $5,000; 2-5 copies, $4,500 each.) GRAMMI is
an Ada user interface toolkit that supports the development of GUIs using the X
windowing system. The GRAMMI widget set is written in Ada and is based on, but
not completely compliant with, the Motif look and feel. The User Interface Editor
allows palette-style rapid prototyping. GRAMMI works with SunAda and HP/Alsys
Ada.

STARS Repository Motit/Ada Bindings. (Free [public domain].) The STARS (PAL,
formerly SIMTEL-20) repository is a collection of public domain software that can be
downloaded from the Internet. Among these is a set of bindings developed by Boeing
that consists of a library of Motif widgets callable from Ada programs. This is not
a GUI builder tool, but simply a library. Researchers at the Georgia Institute of
Technology are investigating the pathnames to obtain these files and will download
them. These bindings should work with all or most Ada compilers.

Portable GUI Development Toolkits
Several tools currently on the market are advertised as GUI development tools for

portable applications. This means that the designer can write code for any one API
and then link to libraries that govern the look and feel of the application on each

USACERL TR FF-04/23

different platform. This option looks very attractive at first, since theoretically they
could enable the development team to write and maintain just one version of the
source code for KWS, which would compile correctly for both Windows and Motif.
However, in practice the tools have shortcomings. The following paragraphs give the
results:

XVT Portability Toolkit (XVT Software). (List $1,450-$4,400.) The XVT toolkit is
advertised to support GUI development for Microsoft Windows, Macintosh, Motif,
Open Look, and character interfaces, among others. It includes a native toolkit and
a GUI builder (a WYSIWYG “palette” tool).

Developers at the Georgia Institute of Technology who have used this tool to develop
an application that had both Microsoft Windows and Motif user interfaces strongly
recommended against using it. They said that the resulting interfaces were
nonstandard and did not conform to the “look and feel” of either Windows or Motif.
They also stated that even though XVT's advertisements claim that programmers
only need to use a single API, it was necessary to go into the generated code to
customizge and fix problems, which slowed development. They are so frustrated that
they are considering taking a loss on their sizable investment in XVT and starting
over from scratch, developing two separate interfaces using Windows-specific and
Motif-specific toolsets (and having two copies of the source).

Aspect (Open Inc.). (List $3,995.) Supports Microsoft Windows, Macintosh, Motif,
and Open Look. Aspect includes a native toolkit and a GUI builder, similar to XVT.

Open Interface (Neuron Data). (List $7,000 [$15,000 for developers].) Supports
Motif, Open Look, Windows, Presentation Manager, Macintosh, and character
interfaces. Neuron Data uses its own proprietary toolkits to achieve the Windows
and Motif look and feel (rather than the native, standard toolkit such as XVT uses).
Neuron feels that this approach enables the company to produce a more flexible
product than it could if it stuck with the native toolkits. Because of the proprietary
implementations of the toolkits, it is likely that this tool diverges from the
standards.

Database Access

KWS currently relies on a centralized Oracle server. Since SQL is a standard 4GL,
KWS could be generalized for other database server programs. However, it is
assumed here that Oracle will remain as the server. The following tools are provided
for application programs to interface with Oracle servers.

USACERL TR FF-94/23

Pro-Ada

Pro-Ada provides an application programming interface to an Oracle server, callable
from Ada. Interfaces are provided by the SPARCWorks Ada and Alsys Ada

compilers.
Pro-C

The corresponding application programming interface to the Oracle server, callable
from C programs. Modules written in Pro-C can be linked with modules from other

C compilers.

4

Transition Study Results

This chapter describes the transition study, which examined platform, opurating
system, user interface, language, and organizational decomposition issues.

Statistical Analysis

To gain insight into the nature of the KWS application, a statistical analysis of the
source code was done. This allowed an assessment of the relative importance of
these issues according to the amount of code devoted to each of the areas of study,
and a determination of the areas that would most affect the re-engineering effort.

The statistical information was gleaned through a combination of techniques: '

1. Inspection and Analysis. The mos. tedious and labor-intensive way to learn
how code functions is simply by reading code and comments. This method is
used to make subjective judgments, e.g., on code and comment quality.

2. Developer interviewing. The re-engineering process is made considerably easier
if the original developers of the candidate system are available for interviewing.
KWS system developers were interviewed to get their estimates of complexity
and to help with difficult areas.

3. Automated tools. Automated tools can quickly and efficiently answer statistical
questions that could take hours if calculated by hand. The UNIX tools grep
(which searches text files for patterns), we (which counts words) and diff (which
compares files) were used extensively to examine the source code for
occurrences of system calls, interfaces to databases, and other statistics.

Statistical Analysis Results

Table 4 shows the initial analysis of the code resulting from the automated tool
method. The number of lines of code (LOC) indicates KWS is a medium-sized
application. KWS depends on two interfaces: the Microsoft Windows Application
Programming Interface, which implements the GUI, and Oracle, the database
interface. These areas were examined to determine how much of the code is

USACERL TR FF-04/28

platform-specific and therefore will Tabie 4. Statistical analysis of KWS source code.

:::w: the initial m‘th sis of the | 7.0} ines of code (LOC) for KWS 38,600
toole; one mostly with sutomated Total lines of executable code (LEC) 29,600

) Total number of source files 97
The next step was to examine the Number of executable modules 39
code to determine percentages that Number of header files 44
might give us information on the _Misc. files (defs, etc.) 14

level of difficulty for migration.
Table 5 shows the distribution
analysis of the code.

Conclusions From Statistical Analysis

This analysis reveals that the overwhelming majority of the code is in the user
interface. Therefore, the largest part of the re-engineering effort will center on
rewriting the Microsoft Windows-based graphical user interface to conform to X and
Motif functionality. Due to the differences between Microsoft Windows and Motif,
this will probably entail some redesign as well as re-engineering.

The next most significant piece of the Knowledge Worker code is the database
(Oracle) access code. This code may be easier to re-engineer than the user interface
because the actual SQL calls will probably remain the same. Therefore, the re-
engineering task will probably entail mostly syntactic changes, but the basic
structure and flow will not change.

The system-dependent file /O and process interface code will need to be re-
engineered because of the substantial differences between the Microsoft Windows
operating system and the UNIX/POSIX operating system. The remaining
algorithmic code, just 2 percent of the whole, is the only code that could probably be
used unchanged after a re-engineering to open systems.

In summary, the large

majority of KWS code is Tabis 5. Distribution snalysis of KWS source code.

platform-dependent and Code Module Amount
therefore will have to be User interface code 85%
re-engineered f°". the Algorithmic code Scheduling module 2%
open By® eaviron- System interface code Database access 8%
ment. File I0 3%
Process interface 1%

Hardware Platform Issues

The largest issue in platform dependence is the availability of tool support and the
differences between operating systems. A review of the Knowledge Worker code
showed no hardware dependencies not handled by the operating system. Therefore,
no platform-dependent problems that are not already addressed by the operating
system conversion are anticipated.

Because the Sun SPARC platform is the most common UNIX workstation, and
because the most comprehensive set of development tools exists for this platform, the
initial re-engineering to POSIX and Motif will be done on the SPARC. A later phase
of the prgject will include a true port to a totally different common architecture, the
386 /486 PC-based UNIX.

Operating System Issues

This section details issues that arise in re-engineering from Microsoft Windows to
the UNIX/POSIX environment. Part of this study entailed an attempt to devise
mappings from Windows capabilities to POSIX features. According to the statistical
analysis of the code, approximately 5 percent of the code is OS-dependent. Other
than the services mapping described below, the only issues are differences in the file
systems. UNIX file names are case-sensitive, while Microsoft Windows filenames are
not. There are also syntactic differences in the filenames that must be taken into
account.

Operating System Services Mapping

To assess the feasibility of supporting all of KWS'’s functionality in an open systems
technology, the number of Microsoft Windows operating system calls were examined
(Rector 1992) and an attempt was made to map these calls to the corresponding
POSIX system calls defined in 1003.1 (IEEE 1988). All of the OS-specific calls
could be mapped to POSIX calls, so0 all of KWS’s functionality can be supported with
open systems. Following is the mapping of KWS Microsoft Windows operating
systems services to the POSIX calls that fulfill the same functions.

File Manipulation (open, fopen). The Windows Open and Fopen calls are supported
in POSIX as specified by IEEE 1003.1 in section 8, referencing the C Language
Standard. Therefore this functionality is present and can be translated.

Global Memory Allocation (GlobalAlloc). Dynamic memory allocation in Windows
is handled with the GlobalAlloc system call. Memory blocks may be fixed or

USACERL TR FF-04/25

USACERL TR FF-84/25

s

moveable. The POSIX.1 standard specifies that dynamic shared memory allocation
must conform to the C Language standard for the C library call malloc. In Ada,
dynamic memory allocation is performed in the language itself instead of with a
direct system call, via the “new” operator on an access variable. Global dynamic
memaory allocation, therefore, will not be a problem with either C or Ada.

Task Creation (child windows). In a KWS application on Microsoft Windows, child
task creation is actually a function of the user interface. Here this will be handled
with the Motif XmCreate() calls. (There are 57 different calls, depending on the type
of child widget or gadget desired.) Therefore the “proof of concept” included an
experiment with mappings from Microsoft Windows child window types to Motif
widgets.

Note that the implementation of KWS does not use some of the features of Windows
that are not supported directly under POSIX, such as Dynamic Data Exchange
(DDE), Dynamic Link Libraries (DLL), and process communication (SendMessage).

Language issues

The current implementation of KWS for Microsoft Windows is written in C.
However, it has been shown that only 2 percent of the code (the algorithmic
scheduling module) could potentially be ported directly. Since the great majority of
the code must be re-engineered anyway, the language issues then revolve mostly
around tool availability and support. This section contrasts the advantages and
disadvantages of the two candidate languages, C and Ada.

Standardization

The DOD standard 1815a defines the Ada language, which is now also an ANSI
standard. The Ada language may not be subsetted or supersetted if the compiler is
validated. There is also an ANSI standard for C. If ANSI C is adhered to, then C is
fairly portable. In addition, there is a standard UNIX tool, lint, that can evaluate
how closely source code conforms to ANSI C.

Complier Availability

Ada compilers are now available for almost every hardware platform, though they
tend to be more expensive than C compilers. Some POSIX-compliant compilers are
available, and more are scheduled to come on the market soon. C compilers and
libraries are usually provided with UNIX distributions, and high-quality public

domain C and C++ compilers (the GNU toolset) are available free of charge." C
programs can use the POSIX libraries of any POSIX-compliant UNIX implementa-
tion without modification, since the POSIX interface was originally specified for C.

Graphical User Interface Tool Support (GUI buliders)

There are GUI builders available for both C and Ada, with slightly more tools
available for C. Some of the tools produced C code, which then could be turned into
Ada through a translation step. Public domain Motif bindings are available for both
Ada and C.

Portability

Ada is designed to be portable and to support good software engineering practices
such as information hiding, encapsulation, modularity, and fault tolerance. If
compiler-dependent features are avoided, then code written in Ada is very portable.
C is also portable, and compilers for the language are ubiquitous. However, C has
many more possibilities for divergence than Ada. If C is chosen, the ANSI standard
C should be adhered to for maximum portability.

POSIX Compliance

The POSIX specification was originally defined for the C language, so those bindings
already exist. Recently, IEEE 1003.5, Ada language bindings to POSIX, were
approved. Market vendors have responded that several POSIX-compliant Ada
compilers will be available by summer 1993.

User Interface Issues

A recent major announcement from the six major UNIX vendors (Sun, Hewlett-
Packard, Univel, IBM, UNIX Systems Laboratories, and the Santa Cruz Operation)
detailed an effort for these vendors to cooperate on developing a Common Open
Software Environment (COSE, pronounced “cozy”) (Uniforum Press Release 1993).
This means that the desktop environment between all the vendors will be the
same—and that desktop applications will be common across all the platforms. This
does not mean that the underlying UNIX operating systems will be standardized, but
that the user interface to the desktop will be standardized. This announcement

* Through the Center for Software Reuse Operations, 500 N. Washington St., Falls Church, VA 22046, tel. 70/536-
7485,

USACERL TR FF-94/25

confirms and strengthens the industry commitment to the concepts and standards
of open systems.

One major effect of this announcement is that Sun has decided to drop development
of its Open Look environment and toolkit. COSE will be based on SunSoft’s ToolTalk
services and the Motif toolkit with some compatibility enhancements, and some
features borrowed from the technically superior Open Look. Existing applications
using XView and OLIT will still be supported.

The effect on the Knowledge Worker migration is that it will now be re-engineered
for Motif, by default. Since the statistical analysis showed that 85 percent of KWS
code is devoted to the user interface, this is a primary area of concern. For this
reason, the user interface was prototyped as a Proof of Concept (Chapter 5). Because
of the differences between Microsoft Windows and Motif, the user interface will need
to be re-engineered. Some small changes in the appearance of the user interface will
also be necessary. These are detailed in the next chapter.

5 Proof of Concept

A GUI rapid prototype was built to demonstrate the feasibility of using open systems
GUI tools to re-engineer KWS. Since 85 percent of the KWS source code is user
interface code, the user interface is the most important component to re-engineer to
assess the difficulty of the migration. The Appendix to this report contains graphical
representations of the screens generated for the prototype.

Overview

The prototype of the KWS user interface is meant to show representative paradigms,
differences, and problems in re-engineering from Microsoft Windows to UNIX and
open systems. For expediency and availability, this prototype was built using the
Sun tools Dev/Guide and the Open Look toolkit. The interface was translated item
by item.

Transformations and Assumptions

The fundamental problem in translating one interface into another while preserving
its functionality is the different stylistic conventions. For example, Open Look (OL)
does not have menu bars as other toolkits do, and OL applications do not have “Quit”
options, because this is handled by the window manager. The best that can be done
is to make the functionality and “look and feel” as close as possible, while respecting
the conventions of both platforms.

The main concerns have been, first, the item’s functionality, and, second, its
appearance. For example, a Windows menu title that drops down a menu when
clicked must be mapped to a OL button that shows a menu when pressed and has a
similar label, shape, color and position. The label and position of an item can be
inferred easily from the manual’s figures and from actual KWS use. The color (where
applicable) can also be inferred from use. But the position and the way items are
grouped sometimes does not directly correspond because of different button sizes or
alignments.

USACERL TR FF-04/28

Mapping the Interface

Table 6 characterizes the mapping that was used for the prototype. The three steps

in translating each item are:

1. Determine the equivalent Open Look item to correspond to the Microsoft

Windows item.

2. Customize Open Look item for similar behavior (e.g., show menu or display

user list).

3. Customize Open Look item for similar look (e.g., label and position).

Table 6. Windows-to-Dev/Guide mepping.

Dev/Guide item

[a1] menu bar

[b1] menu button in (a)

[c1] menu

[h1] menu option

« not selectable
[d1] sub-menu in (h1)
(e1) scroll area

{t1] fine in scroll area (e1)

[01] menu when (1) pressed

[a2] rectangular control area

(b2] button in (a)
+ sot Type to “sbbreviated menu”
« st Menu to proper menu

[c2] menu
« 8ot “not pinnable”
» sot Label to c1's label

[h2] menu item
* 8ot “Inactive”

{d2] menu
* get SubMenu in (h2) to menu

[02] scrolling list
» s6t ReadOnly as required

[t2] item in scrolling list (82)
« 8¢t tem Label to ine contents

(02} set “SubMenu™ in (e1)

corresponds 10 the exact behavior of KWS.

OmormmmmndowhubunmndnodimaToan which loads a file when opened; this

E

6 Transition Plan

This chapter outlines the choices and alternatives available for devising a strategy
to convert the Knowledge Worker System using open systems technology and to
perform a validation step to assess its portability.

Platform Cholce

As described in Chapter 4 (p 24), the Sun SPARC architecture is the recommended
choice for the first re-engineering effort. This platform was chosen because of its
ubiquity and because it supports the best set of development tools currently on the
market. Once the re-engineering effort is complete, then the open systems version
of Knowledge Worker can be ported to other POSIX-compliant architectures. The
resulting system should be ported to another open systems platform, a 386/486
architecture running SCO UNIX. This will provide a validation step to ensure the
portability of the application and to test the quality of the open systems interfaces.

Strategic Alternatives
Alternative 1-—Nonspecific Graphical interface Tool

At first glance, the nonspecific graphical interface tool builders seem very attractive.
In theory, the Knowledge Worker System could be re-engineered to the proprietary
language of the tool, so that code could be automatically produced for each of the
different user interface technologies. This would allow one version of the source code
to be maintained that would produce code for Microsoft Windows, Motif, Open Look,
and even Macintosh. However, after studying these tools further, and after hearing
from large development projects that have used them, there proved to be serious
flaws:

¢ The developer becomes locked into a proprietary intermediate language. This
is dangerous for several reasons—the vendors have total control over the
representation of the language and could change it at their discretion, causing
major difficulties. Also, using a proprietary language violates the spirit of open
systems.

* The tools are not robust or precise enough to completely specify the interfaces,
requiring changes in the generated code to achieve the desired effects. This
means the different platforms wind up with different versions of the source
code, which is exactly what this technology is supposed to prevent.

* The SQL interface might differ on different hardware platforms, meaning once
again that different platforms would have to have different source code.

¢ In general, the interfaces generated by these tools are inferior to hand-built
interfaces. The builders are, unfortunately, not specialists in any single
operating system. The interface technologies supported by these tools vary
widely enough so that no one tool currently supports all of the systems well.

These tools are so primitive that they do not currently fulfill their promise.
Therefore, their use is not currently recommended, although the technology will
likely improve.

Alternative 2—Motif-Specific GUI Tool

The second alternative is to maintain two separate sources—the existing one for
Microsoft Windows and the newly re-engineered open systems source using a Motif-
Specific GUI builder tool. The palette-based tools now available are quite adequate
and can significantly enhance the development process. Since tools already exist
that can support Motif, POSIX compliance, and Ada, this is the recommended
strategy for re-engineering the user interface.

Language Issues

Part of determining the feasibility of re-engineering KWS to open systems technology
was to evaluate the tool support for Ada. There is already adequate tool support for
Ada development. Since Ada is the standard DOD language, it is the recommended

language, bearing in mind that:

* Tools are currently available, although the tool choices are rather limited and
the tools are relatively expensive.

e Ada technology for open systems is still nascent, and some of the re-engineering
work may need experimentation to solve emerging problems.

e Since the original KWS is written in C, the Ada implementation will totally
diverge from the original; there will be no code sharing. In all future versions

of KWS, it will be necessary to modify both the original and the re-engineered
Ada versions of the software.

* The expertise pool for developing and maintaining Ada applications is more
limited than the expertise pool available for C.

The C language was considered as an alternative, and although Ada is the recom-
mended choice because of the DOD standard, a re-engineering in C would also be a
feasible, simpler task. C would offer some advantages:

¢ Some of the code (less than 5 percent) would not have to be re-engineered and
could be used directly.

¢ Using C would reduce the amount of experimentation necessary, and therefore
it would improve the accuracy of cost and schedule estimations.

* C tools are widely available and comparatively cheap or even free.

¢ The interfaces for open systems (notably POSIX and Motif) are defined in C,
and thcrefore are the best-tested, the most reliable, and the most widely
available.

While the considerations listed above are advantages, they are not strong enough
advantages to advocate a waiver for C.

Strategy Recommendation

This chapter details the recommended strategy for re-engineering the Knowledge
Worker System to open systems technology and Ada. Included are an overview of
the development strategy and an associated manpower estimate, a development
schedule, and a cost estimate for personnel services, equipment, and tools.

Development Strategy

The re-engineering effort should be performed in two phases. First there should be
a re-engineering phase, choosing a development platform that has the best tool
support for redesigning and reimplementing the KWS application. According to the
vendor and tool survey done in this study, the Sun SPARC platform has the best
development environment available for open systems tools.

USACERL TR FF-04/25

The second phase of effort is a true port, moving KWS to another open systems
platform to verify portability of the open systems design and code. Since the 386/486
PC is a ubiquitous platform, and since SCO UNIX is POSIX-compliant and is
available for the 386/486 PC platform, it is recommended for the first migration.
Subsequent migration platforms can be included as needed.

Schedule

Figures 1 and 2 show modified Gantt charts giving projected completion schedules
for Phases I and II of KWS migration.

[Month-1 Month-2 Month-3 Month-4 Month-5 Month-6 Month-7
@quim Equipment / Tools
[Redesign User Interface Fmplemcn(User Interface
[Migrate Database Code [Migrate Algorithmic Code | {OS Code Migration
Month-s Month-9 Month-10 Month-11 Month-12 J
@stem Integration
ISys(em Test
IEocumemalion

Figure 1. Projected completion schedules for Phases of KWS migration.

[Month-1 Month-2 Month-3 Month-4 Month-5 Month-6 |

@lipmenl { Tools

[Migrate to SCO Unix on 486

[System Test

Figure 2. Projected completion scheduile for Phase il of KWS migration.

7 Conclusions and Recommendations

This study concludes that it is feasible to convert the Knowledge Worker System to
open system technology. An analysis of KWS showed that the program’s source code
i8 85 percent user interface code, indicating that conversion of the user interface
would make up the bulk of the conversion effort. A prototype graphical user
interface (GUI) was built using open systems GUI tools to demonstrate the feasibility
of accomplishing this major task. Such tools already exist to support POSIX, Motif,
and Ada.

Since Ada is already the DOD standard, and because tools are currently available,
Ada is the recommended choice for converting KWS to open systems technology. The
re-engineering effort should take place in two phases:

1. A development platform should be chosen that has the best tool support for
redesigning and reimplementing the KWS application. The vendor and tool
survey done for this study indicated that the Sun SPARC station is best suited
for this application, and is the recommended platform. The redesign and
reimplementation of KWS should take place on this platform.

2. The Knowledge Worker System should be ported to a second open systems
platform. Since the 386/486 PC is a ubiquitous platform, it is the recommended
path for the first migration. Later platform migrations can be included as
needed.

USACT AL TR PF-94/28

References

POSIX 1003.1 Specification (ANSI Standard) (Institute of Electrical and Electronics Engineers Inc,
1988).

IEEE 1003 Committee, Technical Standards Reference Model, International Standard 1003.3 (1988).
Human Computer Interface Style Guide, ADA 253475 38.92.

Enowledge Worker System Version 1.6 User Manual, Draft Automated Data Processing (ADP) Report
(U.8S. Army Construction Engineering Ressarch Laboratories [USACERL], April 1998).

NIST, Applicat:on Portability Profile, The U.S. Government’s Open System Environment Profile OSE/1,
Version 1.0 (April 1981).

Quarterman, John, and Susanne Wilhelm, UNIX, POSIX, and Open Systems, Addison Wesley UNIX
and Open Systems series (1993).

Rector, Brent E., Developing Windows 3.1 Applications with Microsoft C/C++, 2d ed. (Sams Publishing,
1992).

DOD Architecture Implementation Concept for Information Systems: Technical Reference Manual,
Version 1.3 (January 1983).

Uniforam Press Release, UNIX Leaders Announce Common Open Software Environment—Six
Companies Agree on Software Technologies and Common Deshtop, Reinforce Commitment to Open
Systems (San Francisco Uniforum Conference, 17 March 1998).

Appendix: Prototype Screens

This section contains some of the representative re-engineered open systems screens
from the prototype. This shows the different look and feel in the open systems GUL
The prototype was developed using Sun’s Dev/Guide palette-based GUI builder tool

on a SPARC platform.
® Knawledge Warker System: MELODY
(Filew) (Edit=) ToDo ¥ (Admin v) (Notes) CHindys)

Figure A1. Main screen.

® Event Mahager
(insert) (Delete) ((Modify) (Steps) ((Attach) (Dait) ((Pred) ((Succ)
Events Tasks For: KWS Demo
Date Due Title 1D Date Due Title 1D
22juns3 fly D.C. fly hd 23jun93 glve presentation present f|*
23Jun93 demo KwS demo
(] =

Figure A2. Event manager screen.

l-@ ToDo: MELODY 23JunS3
(Insert) (Dslete (Madits) (Steps) ((Attach) (Doit) ((Pred) ((Succ)
Oate Due _ Title 14 Assigned To Performed By Duntlol
P | 12Nov91 (fate) Order Forms from Supply
SP { 1SApra3 (iate prority task) XX MELODY MELODY
S] 24Jun33 A task on time oK

S |23 jun93 A priority task

Figure A3. ToDo list screen.

Work Groups containing MELODY

ID Title ‘Org ID

[CoC College of Computing |

[—CL 10

Figure A4, Administrator's screen.

=

ToDo Windows

The ToDo windows
information assigned

There is also ToDo:

can access a list of

Task Window -
Subtask. Window -

:m
Help
(Oismiss)
KNOWLEDGE WORKER WELP INDEX =
There are two kinds of windows in the Knowledge Worker System. The =
ToDo: Windows which access thosa windows associated with a single -
Knowledge Worker, and the Event Manager Wind which all of the

windows in the system.

according to a specific time period (i.s., by day, week, month or year) .

assigned to you. From the task windows, you can access a list of
subtasks associated with a selected task. Prom the subtask window you

types of windows accessible from the ToDo Windows are:

subtasks.

are a group of windows that contain all of the
to you. They contain a list of tasks arranged

Complete window that contains a list of all tasks
steps associated with a selected subtask. The

This window contains a list of tasks associated
with a specific knowledge worker.
This window contains a list of associated

—— —_—————————|

Figure AS. Main help screen.

ATIN: CEMP-E
ATTN: CEMPC
ATTN: CECW-O
ATTN: CECW
ATTN: CERM
ATTN: CEMP
ATTN: CERD-C
ATTN: CEMP-M
ATTN: CEMP-R
ATTN: CERD-ZA
ATTN: DAEN-ZC

CECPW

ATTN: CECPW-F 22080
ATTN: CECPW-TT 22080
ATTN: CECPW-ZC 22080
ATTN: DET Il 79808

US Ammy Engr District
ATTN: Lbrary (40)

US Army Engr Division
ATTN: Library (13)

HQ XViil Airbome Corps 28307
ATTN: AFZA-DPW-EE

US Army Materiel Command (AMC)
Aexandria, VA 22333-0001
ATTN: AMCEN-F
Harry Diamond Lab
ATTN: Library 20783
White Sands Missile Range 88002
ATTN: Ubrasy

FORSCOM

Forts Gllem & McPherson 30330
ATTN: FCEN

Installations: (23)

TRADOC

Fort Monroe 23851
ATTN: ATBO-G
instaliations: (20)

Fort Belvolr 22060
ATTN: CECC-R 22080
ATTN: Engr Strategic Studies Ctr

USA Natick RD&E Center 01760
ATTN: STRNC-DT
ATTN: DRONA-F

US Army Materials Tech Lab
ATTN: SLCMT-DPW 02172

SHAPE 09705
ATTN: Infrastructure Branch LANDA

This publication was reproduced on recycied paper.

USACERL DISTRIBUTION

HQ USEUCOM 09126
ATTN: ECM-LIE

CEWES %180
ATTN: Library

CECRL 03785
ATTN: Lbraey

USA AMCOM

ATTN: Facilities Engr 21719
ATTN: AMSMC-EH 61299
ATTN: Faclilties Engr (3) 65613

Fort Leonard Wood 65473
ATTN: ATSE-DACLB (3)

Milltary Dist of WASH
Fort McNair
ATTN: ANEN 20319

USA Engr Activity, Capital Area
ATTN: Library 22211

US Army ARDEC 07808
ATTN: SMCAR-ISE

Engr Societies Library
ATTN: Acquishions 10017

Defense Nuclear Agency
ATTN: NADS 20305

Defense Logistics Agency
ATTN: DLA-WI 22304

Walter Reed Armty Mediical Ctr 20307

National Guard Bureay 20310
ATTN: NGB-ARI

US Miltary Academy 10996
ATTN: MAEN-A
ATTN: Facilities Engineer

ATTN: Geography & Envr Engrg

Naval Facilltiss Engr Command 93043
ATTN: Naval Civil Engr Service Center (3)

USA Japan (USARJ)

ATTN: APAJ-EN-ES 96343
ATTN: HONSHU 96343
ATTN: DPW-Okinawa 96376

410th Engineer Command 80623
ATTN: Gibson USAR Ctr

US Army HSC

Fort Sam Housion 78234
ATTN: HSLO-F
Fitzsimons Army Medical Ctr
ATTN: HSHG-DPW 80045

Tyndall AFB 32403
ATTN: Engrg & SrvcLab

American Public Works Assoc. 84104-1808

US Army Envr Hygiene Agency
ATTN: HSHB-ME 21010

US Govt Printing Office 20401
ATTN: Rec Sec/Deposh Sec (2)

Natl institute of Standards & Tech
ATTN: Library 20099

Defense Tech info Center 22304
ATTN: DTIC-FAB (2)

172
a4

% U.8. GOVERNMENT PRINTING OFFICE: 1994—3510-8/00057

